Blogger Tips And Tricks|Latest Tips For Bloggers Free Backlinks

четверг, 30 июня 2016 г.

Ամառային առաջադրանքներ

1. B թիվը ստացվում է  A եռանիշ թվից` նրա թվանշանները հակառակ հերթականությամբ գրելով: Նրանց գումարում ստացվող թվի բոլոր թվանշանները կարո՞ղ են լինել կենտ թվեր:

2. Նկար 1-ի պատկերը բաժանելով ճիշտ չորրս մասի` վերադասավորեք այդ մասերը այնպես, որ ստացվի նկար 2-ի պատկերը:
                     
                       Նկ. 1                                       Նկ. 2
3. Հանրապետության հրապարակից մինչև քաղաքապետարան վազքի մրցույթին մասնակցեցին երեք մարզիկ: Առաջինը մեկնարկեց Գրիգորը, ապա` Ստեփանը, և վերջինը` Լիլիթը: Ավարտից հետո պարզվեց, որ Գրիգորը մյուսներին վազանցել է 10 անգամ, Լիլիթը` 6 անգամ, իսկ Ստեփանը` 4 անգամ, ընդ որում երեք մարզիկները ոչ մի անգամ միաժամանակ նույն կետում չեն գտնվել: Ի՞նչ հերթականությամբ նրանք հատեցին վերջնագիծը, եթե հայտնի է, որ նրանք վերջնագծին հասան ոչ միաժամանակ:
4. Գտեք այն քառանիշ թիվը, որի առաջին երեք թվանշանների գումարը 19 է, իսկ վերջին երեք թվանշաններինը` 27:
5. Լճում կա երկու տեսակ ձուկ` սիգ և իշխան: Երկու ձկնորսներ միասին բռնեցին 70 ձուկ, ընդ որում առաջին ձկնորսի բռնած ձկների 5/9 մասը սիգ էր, իսկ երկրորդի բռնած ձկների 7/17 մասը` իշխան: Քանի՞ ձուկ էր բռնել նրանցից յուրաքանչյուրը:
6. Նկարի պատկերը բաժանել երեք իրար հավասար (տեսքով և մեծությամբ) մասերի:
  6_2_3
7. Զամբյուղում կա 13 խնձոր: Կշեռքով կարելի է որոշել ցանկացած երկու խնձորի գումարային կշիռը: 8 կշռումով գտեք բոլոր խնձորիների գումարային կշիռը:
8. A քաղաքից B քաղաք լեռնային ճանապարհով ավտոբուսը գնում է 3,5 ժամում, իսկ B քաղաքից A քաղաք` 4 ժամում: Գտնեք A և B քաղաքների հեռավորությունը, եթե վերելքներում ավտոբուսը շարժվում է 25 կմ/ժ, իսկ վայրէջքներում` 50 կմ/ժ արագությամբ:

9. Նկարի պատկերը բաժանեք 4 նույնպիսի մասերի և դրանցից կազմեք քառակուսի, այնպես, որ այն ունենա շախմատային գունավորում:
6_2_311. Մի թիվը մյուսից մեծ է 17 –ով: Եթե փոքր թիվը մեծացվի 2 անգամ, իսկ մեծը՝ 16-ով, ապա նրանց գումարը կլինի 99: Գտեք այդ թվերը:
12. Բացատում ոտաբոբիկ տղաները այնքան են, որքան կոշիկներով աղջիկները: Բացատում ավելի շատ աղջիկ, թե՞ ոտաբոբիկ երեխա կա:

13. Գտեք ամենափոքր բնական թիվը, որի գրառման մեջ ներկա են զրոյից մինչև իննը բոլոր թվանշանները, և որը բաժանվում է 5-ի:
14. Չկատարելով բազմապատկումներ պարզեք բաժանվո՞ւմ է արդյոք           37·124 +21·124 + 58·554-ը 678-ի:
15. Ֆուտբոլային թիմի 11 անդամների միջին տարիքը 22 է: Երբ խաղացողներից մեկին դաշտից հեռացրին, մնացածների միջին տարիքը դարձավ 21: Քանի՞ տարեկան էր հեռացված խաղացողը:
16. Փոխանակման կետում կատարվում են երկու տեսակ գործողություններ.
1) վերցնում են 2 եվրո, վերադարձնում 3 դոլար և մի կոնֆետ նվեր,
2) վերցնում են 5 դոլար, վերադարձնում 3 եվրո և մի կոնֆետ նվեր:
Երբ Բուրատինոն եկավ փոխանակնամ կետ, նա միայն դոլորներ ուներ: Երբ հեռանում էր նրա դոլարները քչացել էին, եվրո էլի չուներ, բայց ուներ 50 կոնֆետ: Քանի՞ դոլար էր պակասել բուրատինոյի մոտ:
17 A բնական թվի 2%-ը մեծ է B բնական թվի 3%-ից: Ճի՞շտ է արդյոք, որ A-ի 5%-ը մեծ է B-ի 7%-ից:
1. Երկնիշ թվի առաջին թվանշանը երկու անգամ մեծ է երկրորդ թվանշանից: Եթե այդ երկնիշ թվին գումարենք նրա առաջին թվանշանի քառակուսին, ապա  կստացվի ինչ-որ ամբողջ թվի քառակուսի: Գտեք սկզբնական երկնիշ թիվը:
2. Հարթության վրա նշեք 6 կետ այնպես, որ յուրաքանչյուրից 1 հեռավորության վրա գտնվեն նշված կետերից երեքը:
3. Մոգական քառակուսու յուրաքանչյուր տողի, սյան և երկու անկյունագծերի թվերի գումարները հավասար են: Կարելի՞ է առաջին 9 հատ պարզ թվերով կազմել  3x3 չափերով մոգական քառակուսի:
Կարո՞ղ է որևէ բնական թվի քառակուսու թվանշանների գումարը լինել 3756:
2. Դպրոցում տեղի ունեցած երեք օլիմպիադաներից յուրաքանչյուրին մասնակցեց 50 աշակերտ, ընդ որում 60 աշակերտ մասնակցեց միայն մեկ օլիմպիադայի, իսկ 30 աշակերտ` ճիշտ երկու օլիմպիադայի: Քանի՞ հոգի մասնակցեց բոլոր օլիմպիադաներին:

0 коммент.:

Отправить комментарий